

Year 12 into 13

Summer work: A question
a day

July 20th Quadratics

Write $2x^2 + 16x - 11$ in the form

$$A(x + B)^2 - C$$

Hence sketch the graph of

$$y = 2x^2 + 16x - 11$$

showing all intersections with the axes and the minimum point

July 21st Surds

Simplify $\frac{8\sqrt{5}}{3-\sqrt{5}}$

July 22nd Powers

Express 8^{3x+2} in the form 2^a

July 23rd Discriminant

The equation $3x^2 + 2p = -px$ has equal roots. Find the value of p.

July 24th Disguised Quadratics

Solve $x^4 - 14x^2 + 45 = 0$

July 25th Inequalities

Find the set of values of x for which both $2x - 2 > 7 - x$ and

$$x^2 - 6x \leq 40$$

July 26th Completing the Square

Complete the square for

$$-0.1x^2 + 40x - 80$$

July 27th Cubics

Sketch $y = 9x - x^3$

July 28th Transformations

The cubic $y = x^3 - 4x^2 - 8x + 9$ is moved 2 units to the right and 3 units down. What is its new equation?

July 29th Quartics

Sketch $y = (x - 3)^2(x + 1)(2 - x)$

July 30th Reciprocal graphs

Sketch $y = \frac{15}{x^2}$

July 31st Integration

$$\frac{dy}{dx} = 6x^{-\frac{1}{2}} + x\sqrt{x}, \quad x > 0$$

Given that $y = 37$ at $x = 4$, find y in terms of x , giving each term in its simplest form.

August 1st Roots

The equation $(p - 1)x^2 + 4x + (p - 5) = 0$, where p is a constant, has no real roots.

(a) Show that p satisfies $p^2 - 6p + 1 > 0$.

(b) Hence find the set of possible values of p .

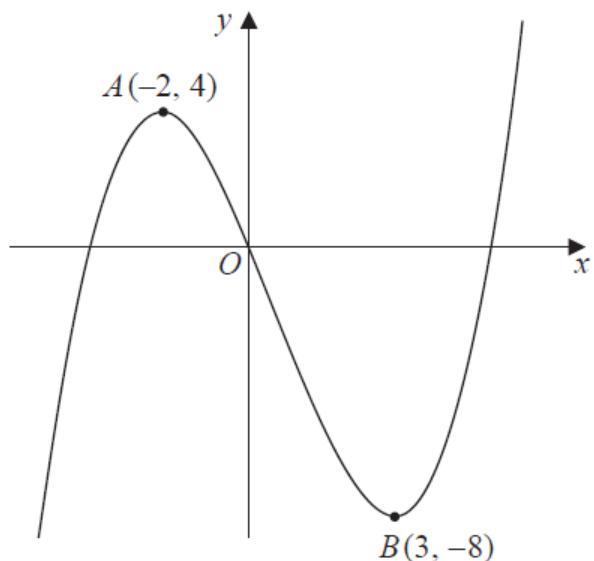
August 2nd Tangents

The curve C has equation $y = \frac{(x^2 + 4)(x - 3)}{2x}$, $x \neq 0$.

(a) Find $\frac{dy}{dx}$ in its simplest form.

(b) Find an equation of the tangent to C at the point where $x = -1$.

Give your answer in the form $ax + by + c = 0$, where a , b and c are integers.


August 3rd Powers

Given that $y = 2^x$,

- (a) express 4^x in terms of y .
- (b) Hence, or otherwise, solve $8(4^x) - 9(2^x) + 1 = 0$.

August 4th

Transformations

Sketch $y = 3f(x)$,

Sketch $y = f(x) - 4$.

August 5th Differentiation

Given that $y = 3x^2 + 6x^{\frac{1}{3}} + \frac{2x^3 - 7}{3\sqrt{x}}$, $x > 0$, find $\frac{dy}{dx}$. Give each term in your answer in its simplified form.

August 6th Coordinate Geometry

The line l_1 has equation $y = -2x + 3$. The line l_2 is perpendicular to l_1 and passes through the point $(5, 6)$.

(a) Find an equation for l_2 in the form $ax + by + c = 0$, where a , b and c are integers.

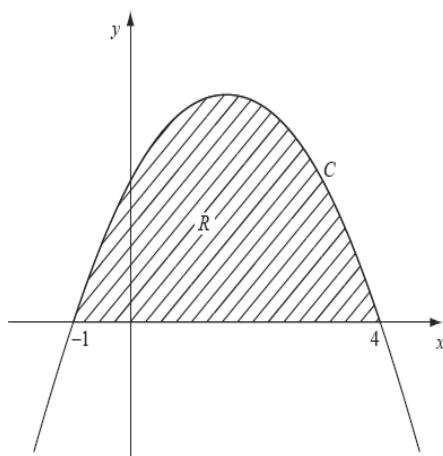
The line l_2 crosses the x -axis at the point A and the y -axis at the point B .

(b) Find the x -coordinate of A and the y -coordinate of B .

Given that O is the origin,

(c) find the area of the triangle OAB .

August 7th Binomial Expansion


Find the first 4 terms, in ascending powers of x , of the binomial expansion of $(1 + ax)^{10}$, where a is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^3 is double the coefficient of x^2 , find the value of a .

August 8th Binomial Expansion

Find the first 3 terms, in ascending powers of x , of the binomial expansion of $(3 - 2x)^5$, giving each term in its simplest form.

August 9th Integration

$y = (1 + x)(4 - x)$. Find the shaded area.

August 10th Logs

Given that $0 < x < 4$ and $\log_5 (4 - x) - 2 \log_5 x = 1$, find the value of x .

August 11th Trig

Solve, for $0 \leq x < 720^\circ$, $4 \sin^2 x + 9 \cos x - 6 = 0$, giving your answers to 1 decimal place.

August 12th Circles

The circle , with centre A , passes through the point P with coordinates $(-9,8)$ and the point Q with coordinates $(15,-10)$.

Given that PQ is a diameter of the circle , find the coordinates for A .

August 13th Optimisation

A Solid right circular cylinder has radius r cm and height h cm.

The total surface area of the cylinder is 800 cm^2 .

Show that the volume, $V \text{ cm}^3$, of the cylinder is given by

$$V = 400r - \pi r^3.$$

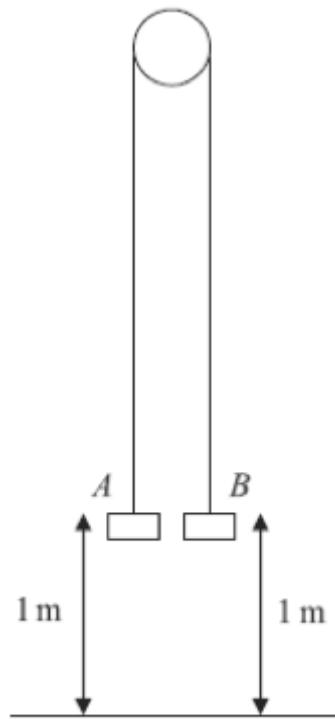
Given that r varies,

use calculus to find the maximum value of V , to the nearest cm^3 .

(Justify that the value of V you have found is a maximum.

August 14th Travel Graphs

A car starts from rest at point A and moves along a straight horizontal road. The car moves with constant acceleration 1.5 m s^{-2} for the first 8 s . The car then moves with constant acceleration 0.8 m s^{-2} for the next 20 s . It then moves with constant speed for T seconds before slowing down with constant deceleration 2.8 m s^{-2} until it stops at a point B .


- (a) Find the speed of the car 28 s after leaving A .
- (b) Sketch a speed–time graph to illustrate the motion of the car as it travels from A to B .
- (c) Find the distance travelled by the car during the first 28 s of its journey from A .

The distance from A to B is 2 km .

- (d) Find the value of T .

August 15th Pulleys

Figure 3

Two particles *A* and *B* have mass 0.4 kg and 0.3 kg respectively. The particles are attached to the ends of a light inextensible string.

The string passes over a small smooth pulley which is fixed above a horizontal floor. Both particles are held, with the string taut, at a height of 1 m above the floor, as shown in Figure 3.

The particles are released from rest and in the subsequent motion *B* does not reach the pulley.

When the particles have been moving for 0.5 s, the string breaks.

Given that the acceleration of *A* immediately after the particles are released is 1.4ms^{-2} , find the further time that elapses until *B* hits the floor.

August 16th Hypothesis testing

Past records from a large supermarket show that 25% of people who buy eggs, buy organic eggs. On one particular day, a random sample of 40 people is taken from those that had bought eggs and 16 people are found to have bought organic eggs.

Test, at the 1% significance level, whether or not the proportion, \hat{p} , of people who bought organic eggs that day had increased. State your hypotheses clearly.

August 17th Kinematics

A car moves with constant acceleration along a straight horizontal road. The car passes the point A with speed 5 m s^{-1} and 4 s later it passes the point B , where $AB = 50 \text{ m}$. The acceleration of the car is 3.75 m s^{-2} .

When the car passes the point B , it has speed 30 m s^{-1} .

Find the distance AB .

August 18th Circles

A circle has equation $x^2 + y^2 - 8x - 6y - 20 = 0$

Find the centre and radius of the circle.

August 19th Trig

Solve, for $-180^\circ \leq x < 180^\circ$, the equation $2 \tan x - 3 \sin x = 0$ giving your answers to 2 decimal places where appropriate.

August 20th Log graphs

If $y = 5x^6$, \log_{10} both sides

If I graphed $\log_{10}y$ against $\log_{10}x$, give the gradient and y intercept

If $y = 3 (2^x)$, \log_{10} both sides

If I graphed $\log_{10}y$ against $\log_{10}x$, give the gradient and y intercept

August 21st First Principles

Differentiate $y = x^2 + 8x + 9$ from first principles

August 22nd Binomial Distribution

$$X \sim B(20, 0.61)$$

Use your calculator to work out

$$P(X > 10)$$

$$P(X < 11)$$

$$P(X \leq 9)$$

$$P(X \geq 13)$$

$$P(X = 11)$$

August 23rd Binomial Distribution

$$X \sim B(30, 0.57)$$

Use your calculator to work out

$$P(X \text{ is greater than } 13)$$

$$P(X \text{ is no more than } 19)$$

$$P(X \text{ is at least } 18)$$

$$P(X \text{ is fewer than } 16)$$

$$P(X \text{ is at most } 20)$$

$$X \sim B(10, 0.41)$$

Use your calculator to work out

$$P(2 < X < 4)$$

$$P(3 \leq X < 7)$$

$$P(4 < X \leq 9)$$

$$P(1 \leq X \leq 5)$$

August 24th Location and Dispersion

Work out the mean and standard deviation and estimate the median and quartiles using interpolation

X	f
1-5	10
6-10	14
11-15	19

August 25th Simplifying

$$\frac{5}{\frac{2}{x} + 4}$$

$$3x + 11 + \frac{2}{x - 3}$$

$$\frac{6x}{3\left(\frac{6x}{3x+4}\right) + 4}$$

$$\frac{1}{2(\frac{x}{2})^2 + 1} \text{ in form } \frac{A}{4+x^2}$$

August 26th Factor theorem

Factorise $6x^3 + 23x^2 - 33x + 10$ using the Factor theorem

August 27th Quadratic modelling

Find the equation of the quadratic passing through (0,0.24), (1,0.31) and (2,0.36) and complete the square for it.

August 28th Binomial twice

A fast food company has a scratchcard competition. It has ordered scratchcards for the competition and requested that 45% of the scratchcards be winning scratchcards.

A random sample of 20 of the scratchcards is collected from each of 8 of the fast food company's stores.

(a) Assuming that 45% of the scratchcards are winning scratchcards, calculate the probability that in at least 2 of the 8 stores, 12 or more of the scratchcards are winning scratchcards.

August 29th : Proof

Always, sometimes or never true:

If $ax > b$ then $x > b/a$

Please explain your answer fully.

August 30th: Proof

Always, sometimes or never true:
Two different irrational numbers multiply
to get an irrational number.
Please explain your answer fully.

August 31st: Proof

Always, sometimes or never true

$x^2 + 10x + 26$ is positive

September 1st: exponentials

Solve $e^{5x-1} = 26$

September 2nd: ln

Solve $\ln 3 + \ln 2x = 5$