
Programming project: Telium

 1 Craig’n’Dave

STAGE 6 – THE QUEEN ALIEN

When the player enters a module occupied by the queen alien, it will attempt to escape by making one, two
or three moves to adjacent modules. The queen cannot go past the player to enter the module the player has
just entered from. However, if it is possible for the queen to double back behind the player, that is a valid
move. If the queen enters a module containing a ventilation shaft, it travels to a random module and stops
moving, irrespective of whether it had moves left to make.

The queen cannot enter a locked module. If the queen has nowhere to escape to, the game is won, although
the final boss battle is still to be programmed.

This is the most complex section of code, providing an excellent opportunity to discuss problem
decomposition, algorithmic thinking and testing.

Try
Add the following procedure to your code. Please note, an arrow indicates that the line is not new but, rather,
a continuation of the one before.

def move_queen():
 global num_modules, module, last_module, locked, queen, won, vent_shafts
 #If we are in the same module as the queen...
 if module == queen:
 print("There it is! The queen alien is in this module...")
 #Decide how many moves the queen should take
 moves_to_make = random.randint(1,3)
 can_move_to_last_module = False
 while moves_to_make > 0:
 #Get the escapes the queen can make
 escapes = get_modules_from(queen)
 #Remove the current module as an escape
 if module in escapes:
 escapes.remove(module)
 #Allow queen to double back behind us from another module
 if last_module in escapes and can_move_to_last_module == False:
 escapes.remove(last_module)
 #Remove a module that is locked as an escape
 if locked in escapes:
 escapes.remove(locked)
 #If there is no escape then player has won...
 if len(escapes) == 0:
 won = True
 moves_to_make = 0
 print("...and the door is locked. It's trapped.")

0
tabs

1
tab

2
tabs

3
tabs

4
tabs

Programming project: Telium

 2 Craig’n’Dave

 #Otherwise move the queen to an adjacent module
 else:
 if moves_to_make == 1:
 print("...and has escaped.")
 queen = random.choice(escapes)
 moves_to_make = moves_to_make - 1
 can_move_to_last_module = True
 #Handle the queen being in a module with a ventilation shaft
 while queen in vent_shafts:
 if moves_to_make > 1:
 print("...and has escaped.")
 print("We can hear scuttling in the ventilation shafts.")
 valid_move = False
 #Queen cannot land in a module with another ventilation
 shaft
 while valid_move == False:
 valid_move = True
 queen = random.randint(1,num_modules)
 if queen in vent_shafts:
 valid_move = False
 #Queen always stops moving after travelling through shaft
 moves_to_make = 0

In the main program section, underneath check_vent_shafts(), add:

move_queen()

0
tabs

1
tab

2
tabs

3
tabs

4
tabs

5
tabs

6
tabs

7
tabs

Programming project: Telium

 3 Craig’n’Dave

Investigate

ITEM
Q: Identify the type of iteration statement being used in the move_queen() subroutine.

STRUCTURE
Q: What do we mean by problem decomposition? How is problem decomposition applied
to this procedure to ensure it can be programmed successfully?

PURPOSE
Q: What is the value of commenting large sections of code like this?

REASON

Q: Why is a while loop known as a condition-controlled loop? Why is a condition-
controlled loop being used over a count-controlled loop?

RELATION

Q: By placing each different type of object in its own unique, named list, we are able to
write lines such as:

while queen in vent_shafts:

What does this line do, and how has it made the program easier to understand?

APPROACH

Q: How could we modify the move_queen() subroutine to allow the queen to travel from
a room with a ventilation shaft to another room with a ventilation shaft?

Programming project: Telium

 4 Craig’n’Dave

Make
1 point
Add a comment above the move_queen() subroutine that summarises the purpose of the new module.

1 point
If the flamethrower contains less than 100 units of fuel, output a “Low fuel” warning on each turn.

2 points
Draw up a test plan with sample data that could be used to test the procedure that moves the queen alien.

3 points
The game immediately ends when the queen alien is trapped. Add a final boss battle where the player has
to use all the fuel in their flamethrower in an attempt to kill it. The queen requires 100 to be killed as a
minimum. If there is insufficient fuel, the player is killed.

3 points
In step 2, you may have considered putting some extra objects into the game – program these now.

Evaluate

1. You should always white-box test your programs against a range of valid inputs to check that all the
various paths through a subroutine are working correctly. Complete the test table for the
move_queen subroutine. You can add and delete columns and rows as necessary.

What is being tested? Expected outcome Pass/Fail

	Stage 6 – The queen alien
	Try
	Investigate
	Make
	Evaluate

