# AQA Chemistry GCSE Student Progress **Unit 4.4 - Chemical Changes**

#### 4.4.1. Reactivity of Metals

# 4.4.1.1. Metal Oxides

| 2 | I know that metals react with oxygen to produce metal oxides and that the reactions |  |  |
|---|-------------------------------------------------------------------------------------|--|--|
| a | are called oxidation reactions because the metals gain oxygen.                      |  |  |
| b | I can explain reduction and oxidation in terms of loss or gain of oxygen.           |  |  |

#### 4.4.1.2. Reactivity Series

|          | I know that when metals react with other substances the metal atoms form positive       |  |  |
|----------|-----------------------------------------------------------------------------------------|--|--|
| a        | ions and that the reactivity of a metal is related to its tendency to form positive     |  |  |
|          | ions.                                                                                   |  |  |
| b        | I know that metals can be arranged in order of their reactivity in a reactivity series. |  |  |
| <b>c</b> | I know that the non-metals hydrogen and carbon are often included in the reactivity     |  |  |
| L        | series.                                                                                 |  |  |
|          | I can recall and describe the reactions, if any, of potassium, sodium, lithium,         |  |  |
| d        | calcium, magnesium, zinc, iron and copper with water or dilute acids and where          |  |  |
|          | appropriate, place these metals in order of reactivity.                                 |  |  |
| •        | I can explain how the reactivity of metals with water or dilute acids is related to     |  |  |
| e        | the tendency of the metal to form its positive ion.                                     |  |  |
| f        | I know that a more reactive metal can displace a less reactive metal from a compound.   |  |  |
| g        | I can deduce an order of reactivity of metals based on experimental results.            |  |  |

#### 4.4.1.3. Extraction of Metals and Reduction

| a | I know that unreactive metals such as gold are found in the Earth as the metal<br>itself but most metals are found as compounds that require chemical reactions to<br>extract the metal. |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I know that metals less reactive than carbon can be extracted from their oxides by reduction with carbon and that reduction involves the loss of oxygen.                                 |  |  |
| с | I can identify the substances which are oxidised or reduced in terms of gain or loss of oxygen.                                                                                          |  |  |
| d | I can interpret and evaluate specific metal extraction processes when given appropriate information.                                                                                     |  |  |

#### 4.4.1.4. Oxidation and Reduction in Terms of Electrons (HT only)

| a | I know that oxidation is the loss of electrons and reduction is the gain of electrons (OILRIG).                        |  |  |
|---|------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I can write ionic equations for displacement reactions.                                                                |  |  |
| с | I can identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced. |  |  |

Page 1 of 4







#### 4.4.2. Reactions of Acids

# 4.4.2.1. Reactions of Acids with Metals

| a | I know that acids react with some metals to produce salts and hydrogen.                                |  |  |
|---|--------------------------------------------------------------------------------------------------------|--|--|
| b | I can explain in terms of gain or loss of electrons, that these are redox reactions (HT only).         |  |  |
| с | I can identify which species are oxidised and which are reduced in given chemical equations (HT only). |  |  |

#### 4.4.2.2. Neutralisation of Acids and Salt Production

| a | I know that acids are neutralised by alkalis (e.g., soluble metal hydroxides) and<br>bases (e.g., insoluble metal hydroxides and metal oxides) to produce salts and water,<br>and by metal carbonates to produce salts, water and carbon dioxide.                                              |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I know that the particular salt produced in any reaction between an acid and a base<br>or alkali depends on the acid used (hydrochloric acid produces chlorides, nitric acid<br>produces nitrates, sulfuric acid produces sulfates) and the positive ions in the base,<br>alkali or carbonate. |  |  |
| с | I can use the formulae of common ions to deduce the formulae of salts.                                                                                                                                                                                                                         |  |  |

#### 4.4.2.3. Soluble Salts

| a | I can describe how soluble salts can be made from acids by reacting them with solid<br>insoluble substances, such as metals, metal oxides, hydroxides or carbonates (the<br>solid is added to the acid until no more reacts and the excess solid is filtered off to<br>produce a solution of the salt). |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I can describe how salt solutions can be crystallised to produce solid salts.                                                                                                                                                                                                                           |  |  |
| с | I can describe how to make pure, dry samples of named soluble salts from information provided.                                                                                                                                                                                                          |  |  |

# 4.3.2.4. Limiting Reactants (HT Only)

| a | I know that acids produce hydrogen ions (H <sup>+</sup> ) in aqueous solutions whilst aqueous solutions of alkalis contain hydroxide ions (OH–).                                          |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I know that the pH scale, from 0 to 14, is a measure of the acidity or alkalinity of a solution, and can be measured using universal indicator or a pH probe.                             |  |  |
| с | I can describe the use of universal indicator or a wide range indicator to measure<br>the approximate pH of a solution and use the pH scale to identify acidic or alkaline<br>solutions.  |  |  |
| d | I know that a solution with pH 7 is neutral, aqueous solutions of acids have pH values of less than 7 and aqueous solutions of alkalis have pH values greater than 7.                     |  |  |
| e | I know that, in neutralisation reactions between an acid and an alkali, hydrogen<br>ions react with hydroxide ions to produce water. This reaction can be represented<br>by the equation: |  |  |
|   | $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$                                                                                                                                            |  |  |





# 4.4.2.5. Titrations (Chemistry Only)

| _   | I know that the volumes of acid and alkali solutions that react with each other can     |  |  |
|-----|-----------------------------------------------------------------------------------------|--|--|
| a   | be measured by titration using a suitable indicator.                                    |  |  |
| h   | I can describe how to carry out titrations using strong acids and strong alkalis only   |  |  |
| a l | (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately. |  |  |
|     | I can calculate the chemical quantities in titrations involving concentrations in       |  |  |
| C   | mol/dm³ and in g/dm³ (HT Only).                                                         |  |  |

### 4.4.2.6. Strong and Weak Acids (HT Only)

| a | I know that a strong acid is completely ionised in aqueous solution. Examples of strong acids are: hydrochloric, nitric and sulfuric acids.                                 |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I know that a weak acid is only partially ionised in aqueous solution. Examples of weak acids are: ethanoic, citric and carbonic acids.                                     |  |  |
| с | I know that, for a given concentration of aqueous solutions, the stronger an acid, the lower the pH.                                                                        |  |  |
| d | I can use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids. |  |  |
| e | I know that as the pH decreases by one unit, the hydrogen ion concentration of the solution increases by a factor of 10.                                                    |  |  |
| f | I can describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only).                     |  |  |

4.4.3. Electrolysis

### 4.4.3.1. The Process of Electrolysis

|   | •                                                                                    |  |  |
|---|--------------------------------------------------------------------------------------|--|--|
|   | I know that when an ionic compound is melted or dissolved in water, the ions are     |  |  |
| a | free to move about within the liquid or solution. These liquids and solutions are    |  |  |
|   | able to conduct electricity and are called electrolytes.                             |  |  |
|   | I know that passing an electric current through electrolytes causes the ions to      |  |  |
|   | move to the electrodes. Positively charged ions move to the negative electrode (the  |  |  |
| b | cathode), and negatively charged ions move to the positive electrode (the anode).    |  |  |
|   | Ions are discharged at the electrodes producing elements. This process is called     |  |  |
|   | electrolysis.                                                                        |  |  |
|   | I can write and balance half equations for the reactions occurring at the electrodes |  |  |
| U | during electrolysis (HT only).                                                       |  |  |

# 4.4.3.2. The Electrolysis of Molten Ionic Compounds

| a | I know that when a simple ionic compound (eg lead bromide) is electrolysed in the molten state using inert electrodes, the metal (lead) is produced at the cathode and the non-metal (bromine) is produced at the anode. |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b | I can predict the products of the electrolysis of binary ionic compounds in the molten state.                                                                                                                            |  |  |



# 4.4.3.3. Using Electrolysis to Extract Metals

| a                                                | I know that metals can be extracted from molten compounds using electrolysis.                                                                                                                                                                                                       |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| b                                                | I know that electrolysis is used if the metal is too reactive to be extracted by<br>reduction with carbon or if the metal reacts with carbon and that large amounts<br>of energy are used in the extraction process to melt the compounds and to produce<br>the electrical current. |  |  |  |  |  |  |
| с                                                | I can describe how aluminium is manufactured by the electrolysis of a molten mixture of aluminium oxide and cryolite using carbon as the positive electrode (anode).                                                                                                                |  |  |  |  |  |  |
| d                                                | I can explain why a mixture is used as the electrolyte and why the positive electrode must be continually replaced.                                                                                                                                                                 |  |  |  |  |  |  |
| 4.4.3.4. Using Electrolysis of Aqueous Solutions |                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

|                                                                                | I know that the ions discharged when an aqueous solution is electrolysed using inert electrodes depend on the relative reactivity of the elements involved: |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 2                                                                              | <ul> <li>at the negative electrode (cathode), hydrogen is produced if the metal is more<br/>reactive than hydrogen;</li> </ul>                              |  |  |  |  |  |  |  |  |  |
| a                                                                              | • at the positive electrode (anode), oxygen is produced unless the solution contains halide ions when the halogen is produced.                              |  |  |  |  |  |  |  |  |  |
|                                                                                | This happens because in the aqueous solution water molecules break down producing                                                                           |  |  |  |  |  |  |  |  |  |
|                                                                                | hydrogen ions and hydroxide ions that are discharged.                                                                                                       |  |  |  |  |  |  |  |  |  |
| h                                                                              | I can predict the products of the electrolysis of aqueous solutions containing a                                                                            |  |  |  |  |  |  |  |  |  |
| D                                                                              | single ionic compound.                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 4.4.3.5. Representation of Reactions at Electrodes as Half Equations (HT Only) |                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| 2                                                                              | I know that, during electrolysis, at the cathode (negative electrode), positively                                                                           |  |  |  |  |  |  |  |  |  |
| a                                                                              | charged ions gain electrons and so the reactions are reductions.                                                                                            |  |  |  |  |  |  |  |  |  |
| h                                                                              | I know that, at the anode (positive electrode), negatively charged ions lose electrons                                                                      |  |  |  |  |  |  |  |  |  |
|                                                                                | and so the reactions are oxidations.                                                                                                                        |  |  |  |  |  |  |  |  |  |

I know that reactions at electrodes can be represented by half equations, for example: С

| 2H <sup>+</sup> + 2P <sup>-</sup> → | H and $4OH^{-}$  | $\rightarrow 0 + 2H 0 + 4e$ | - or | 40H <sup>-</sup> – 4e <sup>-</sup> → | 0 + 2H 0       |
|-------------------------------------|------------------|-----------------------------|------|--------------------------------------|----------------|
|                                     | $1_2$ and $4011$ | $70_2 + 21_20 + 40$         | 01   | 4011 - 46 /                          | $0_2 + 21_2 0$ |



visit twinkl.com

