

Knowledge Organiser – Year 7 Energy

En

Energy stores and transfers			
Energy store	Energy transfers		
• chemical (e.g. fuel + oxygen)	• mechanically (when a force		
• kinetic (in a moving object)	moves through a distance)		
• gravitational (due to the	• electrically (when a charge		
position of an object in a	moves through a potential		
gravitational field)	difference)		
• elastic (e.g. in a stretched or	• by heating (because of a		
compressed spring)	temperature difference)		
• thermal (in a warm object)	• by radiation (e.g. light,		
• magnetic (in two separated	microwaves, sound)		
magnets that are attracting, or			
repelling)	thermal store		
• electrostatic (in two separated	by heating hot water		
electric charges that are	butane in pan		
attracting, or repelling)	+ oxygen by heating pan and		
	chemical store surrounding		

nuclear (released through ٠ radioactive decay, fission or fusion)

chemical store

air

thermal store

Generating electricity

Most electrical energy is generated in the same way. Electrical energy is a secondary source of energy as it requires other forms to generate it.

1. Fuel (natural gas, biomass, nuclear) is used to heat a liquid (usually water) which evaporates.

2. The steam turns the turbine (in cases such as hydroelectric power or tidal energy sources the movement of these can turn the turbine without heating).

3. The turbine turns the generator which is a magnet inside a coil of wire. 4. This generates electricity and is sent to the national grid to go to homes and industries.

Measuring the energy in food

We can measuring the amount of energy in food to see how burning it changes the chemical energy to thermal energy in the test tube (shown below)

There are several problems with this experiment such as not all the energy from the food going into the water - it is dissipated to the surroundings. The volume of water must remain the same throughout the experiment without evaporation. The mass of the food should be equal each time the food is tested.

sea creatures.

Advantages and	Disadvantages of different Energy Sources		Back to the sun. All sources of	
Energy Source	Advantages	Disadvantages	can be linked back to the sun directly	
Fossil Fuels	Cheap to set up, power stations already present	Limited (will run out), causes pollution – greenhouse gases and gases that make acid rain, running costs	such as solar panels or indirectly such as the food	
Nuclear	Does not produce carbon dioxide or sulphur dioxide	Finite (will run out) danger from radioactive material	we eat, nuclear and wind energy.	
Wind power	Infinite, cheap to run, no pollution, cheap to run	Costly to build, only works when windy, noisy and ugly		
Tidal power	Good for islands, potential to generate lots of energy, reliable – tide will always go in and out, doesn't release pollution	Costs a lot to build, hard to find suitable locations, could damage environment	Fossil fuels. Fossil fuels are were once fossils.	
Solar power	Infinite, building can have their own power supply, doesn't release pollution, cheap to run	Expensive to set up, only works when sunny	of trees millions of years ago that got	
Geothermal power	Doesn't create any pollution, potentially infinite	Expensive to set up, only works in volcanic areas, volcanic activity may stop making station useless	something like a	
Hydroelectric power	Doesn't create pollution, creates water reserves	Costly to build, can cause flooding, can have major ecological impacts	fossilised. Natural	
Biomass	Cheap, if replaced can be sustainable	Burning releases atmospheric pollution,	the remains of tiny	

replanting required

Key words

Energy	The ability to do work
Energy source	Something that can be consumed to produce power e.g. coal
Fossil Fuel	The fossil fuels are coal, oil and natural gas. They are fuels because they release heat energy when they are burned. They are fossil fuels because they were formed from the remains of living organisms millions of years ago
Non- renewable	Materials that will one day run out; they are finite (have and end)
Renewable	sustainable ways of generating energy. The quickly replenish themselves and can be used again and again – although you do not use the same bit of energy energy
Wasted	Energy that is lost from a system and is not transferred or changed into
energy	the type of energy desired
Watt	The unit used to measure power
Power	A measure of how quickly energy is transferred
Efficiency	How much energy is transferred or changed into the type of energy you want
Kilowatt hour	The unit used to measure the amount of mains electrical energy transferred
Joule	The unit used to measure energy
Conservation	Energy can't be created or destroyed only changed from one type into
of Energy	another
Work done	The energy transferred when completing a task
Dissipate	The loss of energy from a system (energy wasted)