Inheritance, Variation and Evolution Knowledge Organiser - Separate Science Knowledge Organiser

Keywords

allele - An alternative form of a gene.

asexual reproduction – The production of offspring from a single parent by mitosis. The offspring are clones of the parent.

chromosome – Structures that contain the DNA of an organism and are found in the nucleus.

cystic fibrosis – A disorder of cell membranes caused by a recessive allele.

DNA - A polymer that is made up of two strands that form a double helix.

 ${\bf dominant}$ – An allele that is always expressed, even if only one copy is present.

fertilisation - The fusion of male and female gametes.

gamete – Sperm cell and egg cell in animals; pollen and egg cell in plants.

gene - A small section of DNA that codes for a specific protein.

genome - The entire genetic material of an organism.

genotype - The combination of alleles.

heterozygous – A genotype that has two different alleles – one dominant and one recessive.

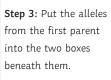
homozygous – A genotype that has two of the same alleles. Either two dominant alleles or two recessive alleles.

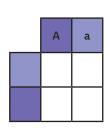
meiosis – The two-stage process of cell division that reduces the chromosome number of the daughter cells. It makes gametes for sexual reproduction.

mutation - A change in DNA.

phenotype - The characteristic expressed because of the combination
of alleles.

polydactyly – Having extra fingers or toes. Is caused by a dominant allele.

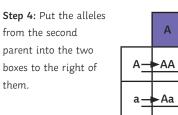

recessive – An allele that is only expressed if two copies of it are present.


sexual reproduction – The production of offspring by combining genetic information from the gametes of two parents. Leads to variation in the offspring.

Mitosis	Meiosis	
Produces two daughter cells.	Produces four daughter cells.	
Daughter cells are genetically identical.	Daughter cells are not genetically identical.	
The cell divides once.	The cell divides twice.	
The chromosome number of the daughter cells	The chromosome number is reduced by half.	
is the same as the parent cells. In humans,	In humans, this is 23 chromosomes.	
this is 46 chromosomes.		
Used for growth and repair, and	Produces gametes for sexual reproduction.	
asexual reproduction.		

How to Complete a Punnet Square

Step 1: Put the two alleles from one parent into the boxes at the top. This parent is a heterozygote. This means they have one dominant and one recessive allele.



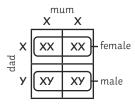
	A	a	
Α	▼ A	▼ a	
a	A♥	a♥	

alleles from the second parent into the boxes on the left. This parent is also a heterozygote.

Step 2: Put the two

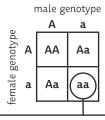
Α

a


Α

nucleus

Sex Determination


Females carry two X chromosomes.

Males carry one X and one Y chromosome.

Probability

There are four possible combinations of gametes that offspring can inherit.

One of these four has the genotype aa, that's $\frac{1}{6}$, 25% or 0.25.

The recessive phenotype has a ratio of 1:3 because only one combination will show the phenotype, while the other three will not.

Inheritance, Variation and Evolution Knowledge Organiser - Separate Science Knowledge Organiser

Keywords

embryo screening - Genetic tests carried out on an All species of living things have evolved from simple embryo to see whether it carries a faulty allele.

evolution - A change in the inherited characteristics of a population, over time, through a process of natural selection.

evolutionary tree - A method used to show how scientists believe organisms are related.

extinction - The permanent loss of all members of a species.

fossils - The remains of organisms from millions of years ago which are found in rocks.

genetic engineering – The process by which scientists manipulate and change the genotype of an organism.

natural selection - The process by which organisms that are better suited to an environment are more likely to survive and reproduce.

selective breeding - Humans selecting animals or plants, that have a required characteristic, for breeding.

speciation – The process by which two species evolve from a single original species by natural selection. The two populations have become so different that they can no longer interbreed to produce fertile offspring.

variation - Differences in characteristics of individuals in a population.

Variation

Variation maybe be due to differences in:

- · the genes that have been inherited (genetic causes);
- the conditions in which they have developed (environmental causes);
- a combination of genes and the environment.

Evolution

life forms by natural selection.

- If a variant/characteristic is advantageous in an environment then the individual will be better able to compete.
- This means they are more likely to survive and reproduce.
- Their offspring will inherit the advantageous allele.

Resistant Bacteria

To reduce the rate at which antibiotic resistant strains appear:

- Antibiotics should only be used when they are really needed, not for treating non-serious or viral infections.
- Patients should complete their courses of antibiotics. even if they start to feel better.
- The agricultural use of antibiotics should be restricted.

There is variation in the bacterial population. One bacterium develops a mutation by chance that means it is resistant to an antibiotic.

The antibiotic kills some of the bacteria, the resistant bacterium survives and reproduces.

The antibiotic kills the rest of the non-resistant bacteria so the person may start to feel a little better. The resistant bacterium has survived the antibiotic and continues to multiply.

Fossils

Fossils could be:

- · the actual remains of an organism that has not decayed;
- mineralised forms of the harder parts of an organism, such as bones;
- · traces of organisms such as footprints or burrows.

Many early life forms were soft-bodied so have left few traces behind.

Fossils help us understand how much or how little organisms have changed as life developed on earth.

Selective Breeding

- · Choose parents who have the desired characteristic.
- Select the best offspring and breed these to make the next generation.
- These offspring are then bred again and again, over many generations, until a desired result is achieved.

1st Generation

2nd Generation

The DNA is isolated from the nucleus.

The plasmid is isolated from the cell.

The plasmid is cut by enzymes.

The gene that is needed is cut The plasmid (vector) is from the DNA by enzymes. used to insert the gene into the required cell.

The gene is inserted

into the plasmid.

Bacteria multiplies

many times.

Classification

bacteria cell

Linnaeus classified living things into kingdom, phylum, class, order, family, genus and species.

Organisms are named by the binomial system of genus and species.

Due to evidence from chemical analysis, there is now a 'three-domain system' developed by Carl Woese.

Domain	bacteria	archaea	eukaryota				
Kingdom	eubacteria	archaebacteria	protista	fungi	plantae	animalia	

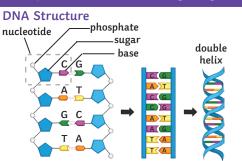
Inheritance, Variation and Evolution Knowledge Organiser - Separate Science Knowledge Organiser

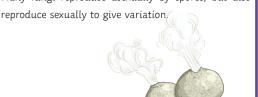
Advantages of sexual reproduction:

- · Produces variation in the offspring;
- If the environment changes, variation gives a survival advantage via natural selection;
- Natural selection can be increased by humans in selective breeding to increase food production.

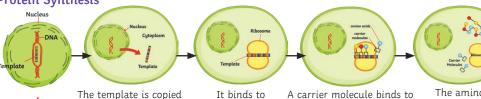
Advantages of asexual reproduction:

- · Only one parent needed;
- · More time and energy efficient as they do not need to find a mate:
- Faster than sexual reproduction;
- Many identical offspring can be produced when conditions are favourable


Malarial parasites reproduce asexually in the human host but sexually in the mosquito.


Evolution by Natural Selection

Darwin's theory was only gradually accepted because..


- · the theory challenged the idea that God made all the animals and plants that live on earth.
- there was insufficient evidence at the time the theory was published to convince many scientists.
- the mechanism of inheritance and variation was not known until 50 years after the theory was published.

Many fungi reproduce asexually by spores, but also

Protein Synthesis

a ribosome.

from the DNA and moves out of the nucleus.

A carrier molecule binds to every three bases. Each one carries an amino acid which is joined to the previous amino.

The amino acid strand folds into a 3D shape.

Cloning in Plants

Many plants produce seeds sexually, but also reproduce asexually by runners such as strawberry plants, or bulb division such as daffodils.

The Understanding of Genetics

1866

Mendel published his results, identifying units of inheritance. His work goes largely unnoticed by other scientists.

1900

1884

Mendel dies.

Boveri provides the first evidence that chromosomes are passed on between generations.

1953

The structure of the double helix is discovered by James Watson and Francis Crick, using data from Rosalind Franklin.

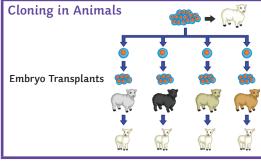
1856

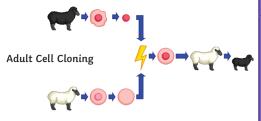
Mendel begins his research.

1882

The 'chromosome dance' of mitosis was observed by Walther Flemming.

1902


Chromosomes are observed separating into gametes in meiosis by Walter Sutton. The connection between chromosomes and Mendel's units is made.


Speciation

isolation – Parts of a population become geographically or environmentally isolated from each other.

conditions – If the conditions in each environment are different, then different characteristics will be advantageous. natural selection - Organisms with this characteristic are more likely to survive and pass on the allele for it to their offspring.

speciation - Eventually, the two populations are so different they can no longer interbreed to produce fertile offspring.

cience

