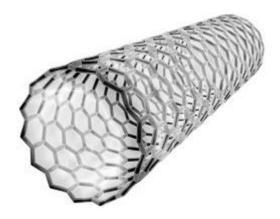


Combined science chemistry transition work: exam booklet		Name:	
		Class:	
		Date:	
Time:	120 minute	es	
Marks:	99 marks		

۱.		
This	question is about metals and the reactivity series.	
(a)	Which two statements are properties of most transition metals?	
	Tick (✓) two boxes.	
	They are soft metals.	
	They form colourless compounds.	
	They form ions with different charges.	
	They have high melting points.	
	They have low densities.	
(b)	A student added copper metal to colourless silver nitrate solution.	
	The student observed:	
	pale grey crystals forming	
	the solution turning blue.	
	Explain how these observations show that silver is less reactive than copper.	
		_
		_
		_
		_
		_
		_
(c)	A student is given three metals, X , Y and Z to identify.	
	The metals are magnesium, iron and copper.	
	Plan an investigation to identify the three metals by comparing their reactions with dilute hydrochloric acid.	
	Your plan should give valid results.	


		numbers and percentage abu	undances of the	
	s the mass		undances of the	
The table below show isotopes.	s the mass	numbers and percentage abu Percentage abundance (%) 30	undances of the	
The table below show isotopes. Mass number	s the mass	Percentage abundance (%)	undances of the	
The table below show isotopes. Mass number 203	er	Percentage abundance (%) 30 70	undances of the	
The table below show isotopes. Mass number 203 205	er atomic mas	Percentage abundance (%) 30 70 es (A _r) of metal M .	undances of the	
The table below show isotopes. Mass number 203 205 Calculate the relative Give your answer to 1	er atomic mas decimal pla	Percentage abundance (%) 30 70 es (A _r) of metal M .		
The table below show isotopes. Mass number 203 205 Calculate the relative Give your answer to 1	er atomic mas decimal pla	Percentage abundance (%) 30 70 as (A _r) of metal M . ace.		
The table below show isotopes. Mass number 203 205 Calculate the relative Give your answer to 1	er atomic mas decimal pla	Percentage abundance (%) 30 70 as (A _r) of metal M . ace.		

Q2.

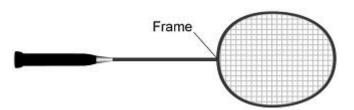
This question is about materials and their properties.

(a) **Figure 1** shows a carbon nanotube.

Figure 1

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.


Explain why carbon nanotubes conduct electricity.

(2)

(b) Figure 2 shows a badminton racket.

Figure 2

The following table shows some properties of materials.

The materials could be used to make badminton racket frames.

Material	Density in g/cm³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

Use the table above.

oxide can be produced as nanoparticles and as fine particles. A nanoparticle of zinc oxide is a cube of side 82 nm	
Figure 3 represents a nanoparticle of zinc oxide.	
Figure 3	
Figure 3	
82 nm	
Calculate the surface area of a nanoparticle of zinc oxide.	
Calculate the surface area of a nanoparticle of zinc oxide.	

(d) Some suncreams contain zinc oxide as nanoparticles or as fine particles.

	in suncreams.	ticics
	(To	tal 10 marks
Q3.	is guestion is about organic compounds	
(a)	is question is about organic compounds. Butane is an alkane with small molecules.	
(α)	Complete the sentence.	
	Choose the answer from the box.	
	fertiliser formulation fuel	
	Butane can be used as a	(1
(b)	Poly(propene) is a polymer.	(
	What is the name of the monomer used to produce poly(propene)?	
	Tick (✓) one box.	
	Propane	
	Propanoic acid	
	Propanol	
	Propene	
		(*
	nene and steam react to produce ethanol.	
The	e equation for the reversible reaction is:	
	ethene + steam	
(c)	The reaction produces a maximum theoretical mass of 400 kg of ethanol from kg of ethene and 157 kg of steam.	243
	A company produces 380 kg of ethanol from 243 kg of ethene and 157 kg of s	team.
	The percentage yield of ethanol is less than 100%	

	percentage yie	ld of othernol —	of ethanol actually made n theoretical mass of ethan	× 100	
			Percentage yield =	%	(2
d)	What are two po 100%?	ossible reasons why the p	percentage yield of ethand	ol is less than	
	Tick (✓) two bo	xes.			
	Ethanol is the creaction.	only product of the			
	Ethanol is very	unreactive.			
	Some ethanol of ethene and ste	changes back into am.			
	Some ethanol eapparatus.	escapes from the			
	Some ethanol ı	reacts with steam.			
.,	Ethanal hurna in	owigon			(2
))	Ethanol burns in	nation for the reaction.			
	Balance the equ	C ₂ H ₅ OH + O ₂ -	→ 3 H ₂ O + 2 CO ₂		(1
)	 fermentati 	for producing ethanol are on (reacting ethene with ste			
	The table below	shows information abou	t the processes.		
		Pro	cess		
	Feature	Fermentation	Hydration		
	Raw material	sugar	crude oil		
	Energy usage	low	high		

Rate of reaction	slow	fast
Purity of ethanol	15%	98%

Give **two** advantages and **two** disadvantages of using fermentation to produce ethanol.

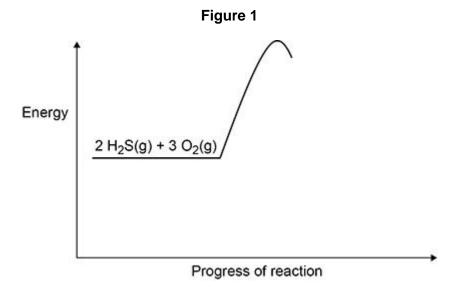
Advantage of fermentation 1	
Advantage of fermentation 2	
Disadvantage of fermentation 1	
Disadvantage of fermentation 2	
(Total 11 ma	(4) ırks)
question is about the reaction between hydrogen sulfide (H_2S) and oxygen.	
The equation for the reaction is:	
$2 \; H_2S(g) + 3 \; O_2(g) \to 2 \; H_2O(g) + 2 \; SO_2(g)$	
What does H₂O(g) represent?	
Calculate the volume of oxygen required to react with 50 cm³ of hydrogen sulfide.	(1)
Volume =cm ³	(1)

(c) Figure 1 shows part of the reaction profile for the reaction.

The reaction is exothermic.

Complete Figure 1.

You should:


Q4.

This

(a)

(b)

- complete the profile line
- label the activation energy
- label the overall energy change.

(d) **Figure 2** shows the displayed formula equation for the reaction of hydrogen sulfide with oxygen.

(3)

Figure 2 $2H-S-H + 30=0 \rightarrow 2H-O-H + 20=S=0$

The table below shows some of the bond energies.

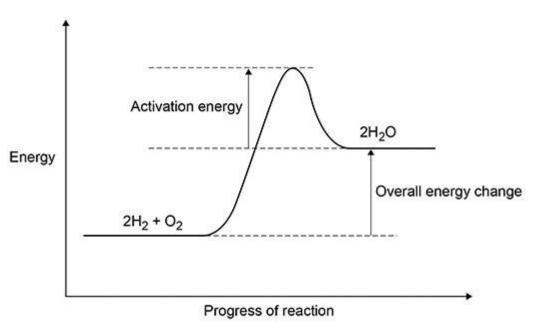
Bond	$H\!-\!S$	0=0	H-O	s=0
Energy in kJ/mol	364	498	464	Х

In the reaction the energy released forming new bonds is 1034 kJ/mol greater than the energy needed to break existing bonds.

Calculate the bond energy **X** for the bond.

Use **Figure 2** and the table above.

	, .
X =	kJ/mol
	
	(E)
	(5)
	(Total 10 marks)
	(Total To Illants)


Q5.

The reaction between hydrogen and oxygen releases energy.

(a) A student drew a reaction profile for the reaction between hydrogen and oxygen.

Figure 1 shows the student's reaction profile.

The student made **two** errors when drawing the reaction profile.

Describe the **two** errors.

1 _	
2 _	

(2)

(b) The reaction between hydrogen and oxygen in a hydrogen fuel cell is used to produce electricity.

Hydrogen fuel cells and rechargeable cells are used to power some cars.

2				
Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.				
Write a half equation fo	or one of these reactions.			
The three states of matter can be represented by a simple particle model.				
F igure 2 shows a simp	le particle model for hydrogen gas.			
	Figure 2			
Give two limitations of this simple particle model for hydrogen gas. 1				
1				
2				
The hydrogen gas needed to power a car for 400 km would occupy a large volume.				
Suggest one way that this volume can be reduced.				

	(4) (Total 12 marks)
Volume of hydrogen gas =	dm³
Calculate the volume of hydrogen gas at room temperature and press the car to travel 100 km	ure needed for
The volume of 1 mole of a gas at room temperature and pressure is 24	4 dm³
The energy released when 1 mole of hydrogen gas reacts with oxyger	n is 290 kJ
megajoules (MJ).	

Q6.

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

The table below shows information about the first three carboxylic acids in this homologous series.

Name	Formula	pH of a 0.01 mol/dm³ solution
Methanoic acid		2.91
Ethanoic acid	СН₃СООН	3.39
	CH₃CH₂COOH	3.44

(a) Complete the table above.

(2)

(b) Ethanoic acid ionises in water.

The equation for the reaction is:

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$$

Explain how the equation shows that ethanoic acid is a weak acid.

N atudant add	a a colution of athennia said to zine carbonate in an anon flock on a
balance.	s a solution of ethanoic acid to zinc carbonate in an open flask on a
Explain what I	happens to the mass of the flask and its contents during the reaction
	ompares the rates of the reaction of zinc carbonate with:
0.01 mc	ompares the rates of the reaction of zinc carbonate with: ol/dm³ methanoic acid ol/dm³ ethanoic acid.
0.01 mc 0.01 mc The rate of the	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction
0.01 mc 0.01 mc 0.01 mc The rate of the with ethanoic	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction
0.01 moved of the vith ethanoic Explain why.	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction
0.01 mo 0.01 mo The rate of the with ethanoic Explain why.	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction acid. efer to ions in your answer.
0.01 moved on the control of the control of the with ethanoic explain why. You should re	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction acid. efer to ions in your answer.
0.01 moved on the control of the con	ol/dm³ methanoic acid ol/dm³ ethanoic acid. e reaction with methanoic acid is greater than the rate of the reaction acid. efer to ions in your answer.

Ethanoic acid reacts with ethanol to produce an ester.

(e) Give the name of the ester produced when ethanoic acid reacts with ethanol.

(1)

(f) Hexanedioic acid and ethanediol join together to produce a polyester.

Ethanoic acid and ethanol join together in the same way to produce an ester.

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?

Tick (✓) one box.

(1) (Total 12 marks)

Q7.

Ethene is used to produce poly(ethene).

(a) Draw the bonds to complete the displayed formulae of ethene and poly(ethene) in the equation.

(2)

Polyesters are made by a different method of polymerisation.
The equation for the reaction to produce a polyester can be represented as:
O- \square -OH + n HOOC- \square -COOH \rightarrow $+ 2nH_2O$
Compare the polymerisation reaction used to produce poly(ethene) with the polymerisation reaction used to produce a polyester.
(Total 6 ma
(Total o line
sh alum is a chemical compound.
ormula of potash alum is KAI(SO ₄) ₂
Give a test to identify the Group 1 metal ion in potash alum.
You should include the result of the test.
Test
Result
s

The student tests a solution of potash alum by adding sodium hydroxide solution until a change is seen. (c) Give the result of this test. (1) (d) This test gives the same result for several metal ions. What additional step is needed so that the other metal ion in potash alum can be identified? Give the result of this additional step. Additional step _____ (2) Describe a test to identify the presence of sulfate ions in a solution of potash alum. (e) Give the result of the test. Test _____ Result (3) (Total 9 marks) Q9. This question is about alloys. Bronze and brass are both alloys which contain copper. Bronze is an alloy of copper and one other metal. (a) What is the other metal in bronze?

A student identifies the other metal ion in potash alum.

Tick (\checkmark) one box.

	Aluminium						
	Tin						
	Zinc						
၁)	Give one use of	brass.					
llo	s of gold are used	d to make jewel	lery.				
c)	The proportion ofpure gold i50% gold i	s 24 carat	y is measured ir	n carats:			
	_	The table below shows information about two gold rings, A and B .					
	A and B contain	only gold and	silver.	-			
		A and B contain only gold and silver. Complete below the table below.					
	Coldring	Coret	Mass of metal in grams				
	Gold ring	Carat	gold	silver			
	Α		7	7			
	В	18	9				
d)	Suggest two rea jewellery.		s of gold are use	ed instead of pure			
(b	Suggest two rea jewellery.		s of gold are use	·			
d)	Suggest two rea jewellery.		s of gold are use				
	Suggest two rea jewellery.		s of gold are use				

		are washed after use	
		must not wear away quickly.	
		Suggest one reason why stainless steel is suitable for making spoons.	
			(1)
	(f)	Steel horseshoes are shaped to fit the feet of horses.	
		Which type of steel is most easily shaped into horseshoes?	
		Tick (✓) one box.	
		High carbon steel	
		Low carbon steel	
		Stainless steel	
		(Total 8 m	(1) narks)
Q1		question is about reversible reactions and equilibrium.	
		rogen is used to produce ammonia in the Haber process.	
	The	hydrogen is made in two stages.	
	Stag	ge 1 is the reaction of methane and steam to produce carbon monoxide and hydrogen.	
	The	equation for the reaction is:	
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3 H_2(g)$	
	(a)	Calculate the atom economy for the formation of hydrogen in stage 1 .	
		Relative atomic masses (A_r): $H = 1$ $C = 12$ $O = 16$	
		Atom economy =%	

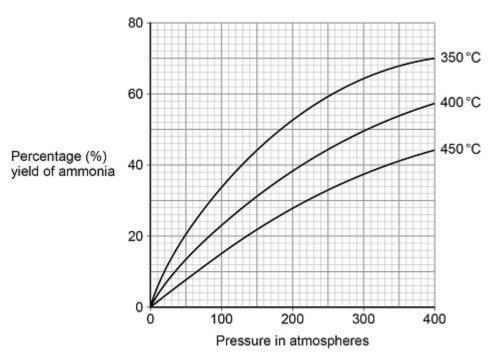
(2)

(b) Explain why a low pressure is used in **stage 1**.

Give your answer in terms of equilibrium.

(c) Stage 2 uses the carbon monoxide produced in stage 1.

The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen.


The equation for the reaction in stage 2 is:

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

What is the effect of increasing the pressure on the equilibrium yield of hydrogen in **stage 2**?

(1)

The graph below shows the percentage yield of ammonia produced at different temperatures and pressures in the Haber process.

A temperature of 450 °C and a pressure of 200 atmospheres are used in the Haber process.

Determine be.	how many times greater the percentage yield of amm	nonia obtained would
Use the gr	aph.	
	Percentage yield =	times greater
A pressure atmosphe	e of 285 atmospheres is not used in the Haber proces res.	s instead of 200
Give one	reason why.	
How does exothermi	the graph above show that the forward reaction in the	e Haber process is
\\\\\		
·	duction of ammonia is now about 30 times greater that why the demand for ammonia has increased.	n it was in 1950.